

libEnsemble: A Library for Managing Dynamic Ensembles of Calculations

David Bindel Stephen Hudson John-Luke Navarro Jeffrey Larson Stefan Wild

Argonne National Laboratory

July 14, 2020

▶ libEnsemble is a library to coordinate the concurrent evaluation of dynamic ensembles of calculations

- ▶ libEnsemble is a library to coordinate the concurrent evaluation of dynamic ensembles of calculations
- Developed to use massively parallel resources to accelerate the solution of design, decision, and inference problems

- ▶ libEnsemble is a library to coordinate the concurrent evaluation of dynamic ensembles of calculations
- Developed to use massively parallel resources to accelerate the solution of design, decision, and inference problems
- Developed to expand the class of problems that can benefit from increased computational concurrency levels

- ▶ libEnsemble is a library to coordinate the concurrent evaluation of dynamic ensembles of calculations
- Developed to use massively parallel resources to accelerate the solution of design, decision, and inference problems
- Developed to expand the class of problems that can benefit from increased computational concurrency levels
- ▶ libEnsemble uses a manager to allocate work to various workers

- ▶ libEnsemble is a library to coordinate the concurrent evaluation of dynamic ensembles of calculations
- Developed to use massively parallel resources to accelerate the solution of design, decision, and inference problems
- Developed to expand the class of problems that can benefit from increased computational concurrency levels
- ▶ libEnsemble uses a manager to allocate work to various workers
- ► A libEnsemble worker is the smallest indivisible unit to perform

libEnsemble requires of the user

 ${\tt gen_f:} \ \, \textbf{Generates inputs to} \, \, \texttt{sim_f and alloc_f}$

libEnsemble requires of the user

 ${\tt gen_f} \colon \textbf{ Generates inputs to } {\tt sim_f } \textbf{ and } {\tt alloc_f}$

 sim_f : Evaluates a simulation (i.e., user-defined function) using input defined by gen_f

libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
 defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called (and with what input/resources) as workers become available

Python 3.5+, NumPy, psutil

Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble

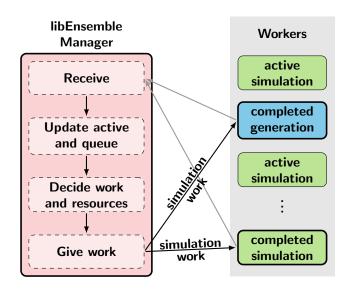
- ► An MPI implementation (e.g., MPICH) built with shared/dynamic libraries
- mpi4py v2.0.0 or above

Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble

- An MPI implementation (e.g., MPICH) built with shared/dynamic libraries
- mpi4py v2.0.0 or above

► Can also use multiprocessing or TCP for libEnsemble communications



Python 3.5+, NumPy, psutil

If using MPI communications in libEnsemble

- An MPI implementation (e.g., MPICH) built with shared/dynamic libraries
- mpi4py v2.0.0 or above

- ► Can also use multiprocessing or TCP for libEnsemble communications
- Example gen_f/sim_f functions require NLopt, PETSc, SciPy, Tasmanian, etc.

- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function

- sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ▶ Maintenance of calculation history and performance measures

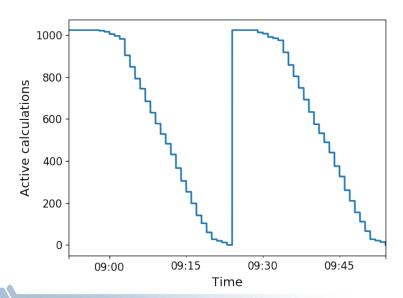
- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ► Maintenance of calculation history and performance measures
- ► Termination of unresponsive simulation/generation calculations

- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ► Maintenance of calculation history and performance measures
- ► Termination of unresponsive simulation/generation calculations
- ► Termination based on intermediate simulation/generation output

- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ► Maintenance of calculation history and performance measures
- ► Termination of unresponsive simulation/generation calculations
- ► Termination based on intermediate simulation/generation output
- Nonfatal handling (i.e., graceful degradation/fail soft) of failed simulation/generation calculation

- sim_f/gen_f calculations can employ/access parallel resources
 - This places requirements on user's environment and simulation/generation function
- Maintenance of calculation history and performance measures
- Termination of unresponsive simulation/generation calculations
- Termination based on intermediate simulation/generation output
- Nonfatal handling (i.e., graceful degradation/fail soft) of failed simulation/generation calculation
- Ability to recover hardware resources from libEnsemble-/generation-/simulation-terminated calculations

- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ► Maintenance of calculation history and performance measures
- Termination of unresponsive simulation/generation calculations
- ► Termination based on intermediate simulation/generation output
- Nonfatal handling (i.e., graceful degradation/fail soft) of failed simulation/generation calculation
- Ability to recover hardware resources from libEnsemble-/generation-/simulation-terminated calculations
- Simulation/generation checkpoint and restart


- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ► Maintenance of calculation history and performance measures
- Termination of unresponsive simulation/generation calculations
- Termination based on intermediate simulation/generation output
- Nonfatal handling (i.e., graceful degradation/fail soft) of failed simulation/generation calculation
- Ability to recover hardware resources from libEnsemble-/generation-/simulation-terminated calculations
- Simulation/generation checkpoint and restart
- Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)

- ▶ sim_f/gen_f calculations can employ/access parallel resources
 - ► This places requirements on user's environment and simulation/generation function
- ► Maintenance of calculation history and performance measures
- ► Termination of unresponsive simulation/generation calculations
- ► Termination based on intermediate simulation/generation output
- Nonfatal handling (i.e., graceful degradation/fail soft) of failed simulation/generation calculation
- Ability to recover hardware resources from libEnsemble-/generation-/simulation-terminated calculations
- Simulation/generation checkpoint and restart
- Execution on multiple LCFs (Summit/OLCF, Cori/NERSC, Theta/ALCF)
- Thousands of concurrent workers

OPAL particle accelerator simulations on 1024 Theta nodes

OPAL particle accelerator simulations on 1024 Theta nodes

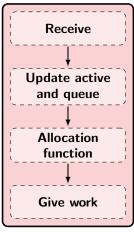
Easily take serial code and start running in parallel

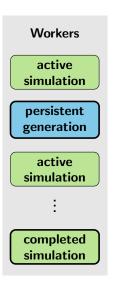
- Easily take serial code and start running in parallel
- ▶ Add another level of parallelism to a simulation that no longer scales

- ► Easily take serial code and start running in parallel
- ▶ Add another level of parallelism to a simulation that no longer scales
- Don't have to write your own tracking code, libEnsemble will tell you which runs fail and start other work

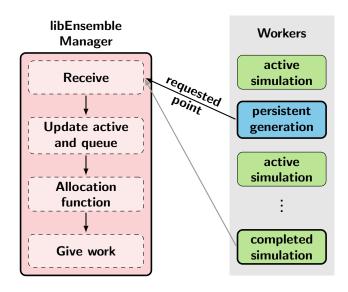
- ► Easily take serial code and start running in parallel
- ▶ Add another level of parallelism to a simulation that no longer scales
- Don't have to write your own tracking code, libEnsemble will tell you which runs fail and start other work
- Don't have to write your own kills, just complete libEnsemble templates

- ► Easily take serial code and start running in parallel
- ▶ Add another level of parallelism to a simulation that no longer scales
- Don't have to write your own tracking code, libEnsemble will tell you which runs fail and start other work
- Don't have to write your own kills, just complete libEnsemble templates
- Want to add concurrency to a generator (e.g., multiple local optimizers.)

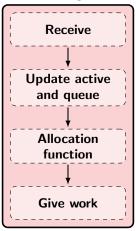

Why libEnsemble and not...?

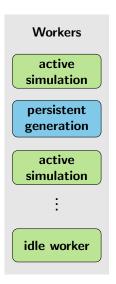

Swift: (the parallel scripting language)

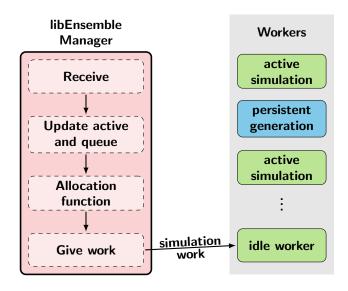
- "Can run million programs, thousands at a time, launching hundreds per second"
- Require writing your generators in Swift's scripting language
- Difficult to tightly couple generation of inputs and future/active running simulations



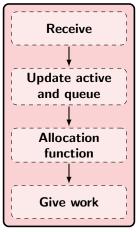
libEnsemble Manager

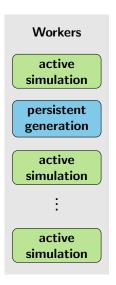


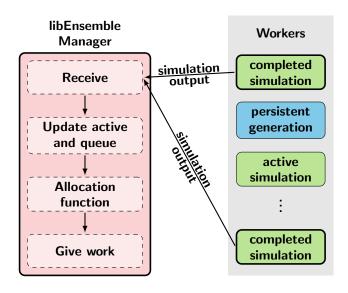


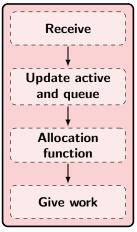


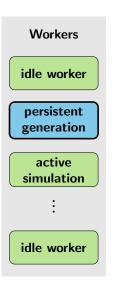
libEnsemble Manager



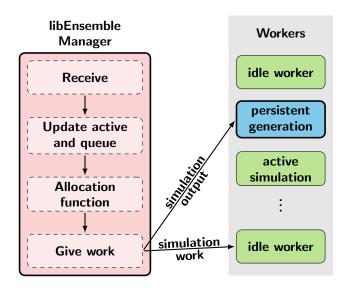


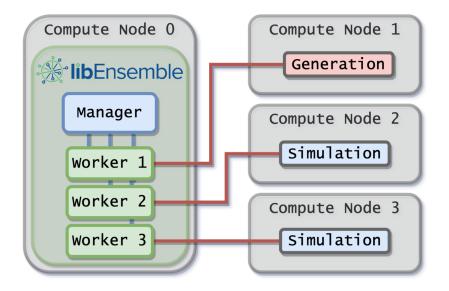

libEnsemble Manager


libEnsemble overview

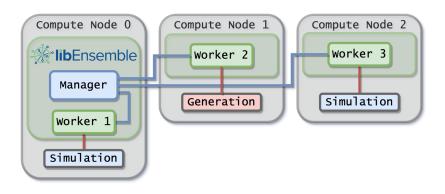


libEnsemble overview


libEnsemble Manager



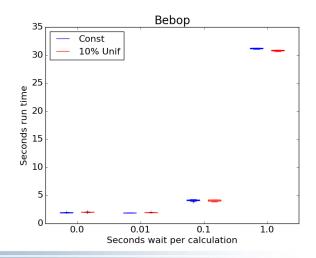
libEnsemble overview



libEnsemble modes: centralized or distributed

libEnsemble modes: centralized or distributed

Timing libEnsemble overhead


► Time for libEnsemble to sample/evaluation 30×(workers) points

Timing libEnsemble overhead

- ► Time for libEnsemble to sample/evaluation 30×(workers) points
- ► Tons of system-dependent caveats

Timing libEnsemble overhead

- ► Time for libEnsemble to sample/evaluation 30×(workers) points
- ► Tons of system-dependent caveats
- \triangleright 32 nodes \times 36 cores = 1152-1 workers

- ► A user wants to optimize a function that depends on a simulation
- ► The simulation is already using parallel resources, but not a large fraction of some computer
- ▶ libEnsemble can coordinate the concurrent evaluation of the simulation sim_f at various parameter values and gen_f would return candidate parameter values (possibly after each sim_f output)

- ► A user has a gen_f that produces different meshes to be used within a sim_f
- ► Given the sim_f output, gen_f will refine a mesh or produce a new mesh
- ► libEnsemble can ensure that the calculated meshes can be used by multiple simulations without requiring movement of data

- ► A user wants to evaluate a simulation sim_f at parameters sampled from a set of parameter values
- Many parameter sets will cause the simulation to fail
- ▶ libEnsemble can stop unresponsive evaluations, and recover computational resources for future evaluations
- gen_f can update the sampling after discovering regions where evaluations of sim_f fail

- ► A user has a simulation sim_f that requires calculating multiple expensive quantities, some of which depend on other quantities
- ▶ libEnsemble can observe intermediate quantities in order to stop related calculations and preempt future calculations associated with a poor parameter values

- ► A user wishes to identify multiple local optima for a sim_f
- ▶ libEnsemble can use the points from the APOSMM gen_f to identify optima

- ▶ A user wishes to identify multiple local optima for a sim_f
- ▶ libEnsemble can use the points from the APOSMM gen_f to identify optima

Naturally, combinations of use cases is supported as well

We want to identify distinct, "high-quality", local minimizers of

▶ High-quality can be measured by more than the objective

We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

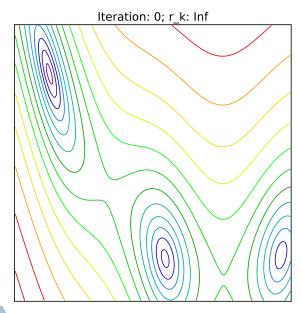
 $1 \le x \le u$
 $x \in \mathbb{R}^n$

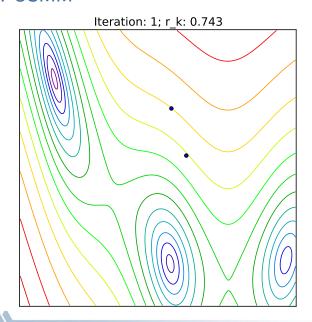
- High-quality can be measured by more than the objective
- Derivatives of f may or may not be available

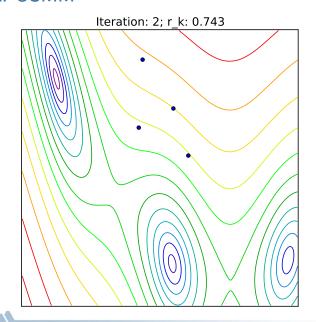
We want to identify distinct, "high-quality", local minimizers of

minimize
$$f(x)$$

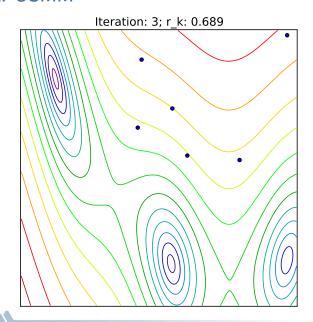
 $1 \le x \le u$
 $x \in \mathbb{R}^n$

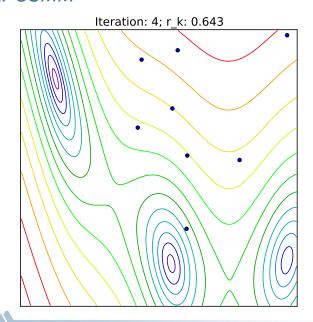

- ► High-quality can be measured by more than the objective
- Derivatives of f may or may not be available
- ► The simulation *f* is likely using parallel resources, but it does not utilize the entire machine

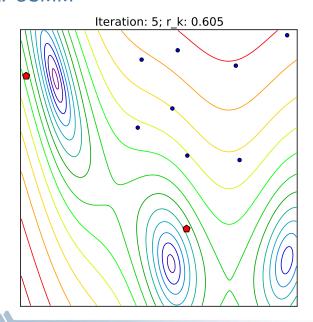

We want to identify distinct, "high-quality", local minimizers of

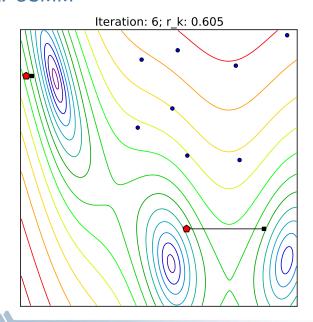

minimize
$$f(x)$$

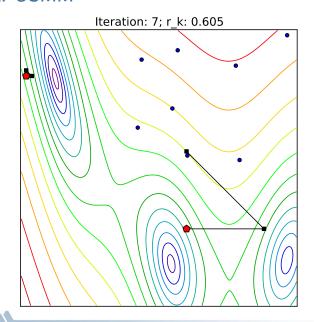
 $1 \le x \le u$
 $x \in \mathbb{R}^n$

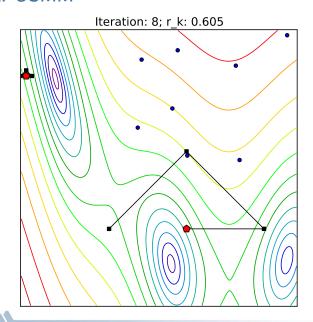

- ► High-quality can be measured by more than the objective
- Derivatives of f may or may not be available
- ► The simulation *f* is likely using parallel resources, but it does not utilize the entire machine
- Possibly have a specialized local optimization method for f

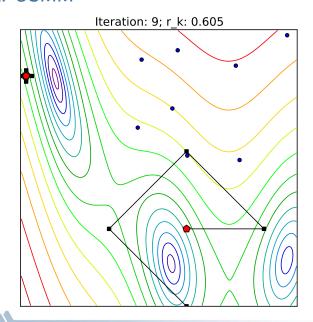


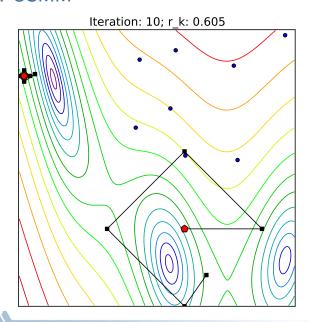


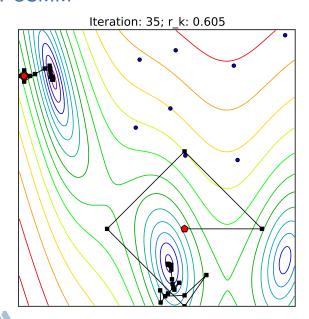


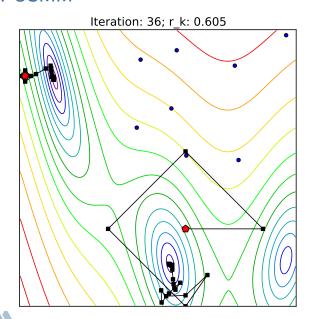


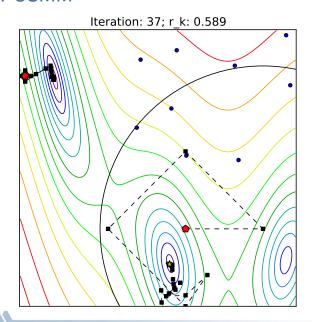


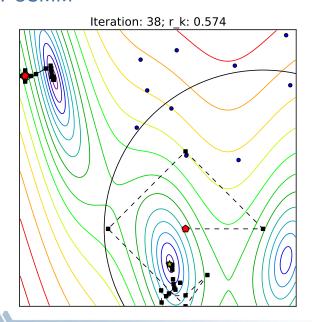


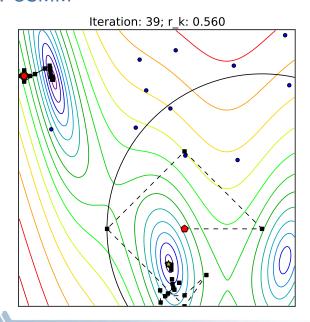


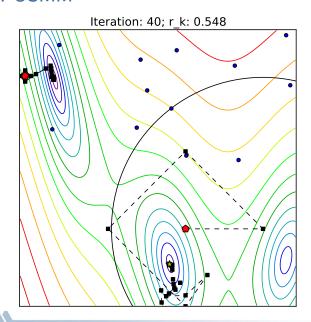


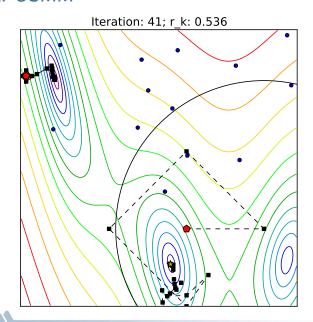


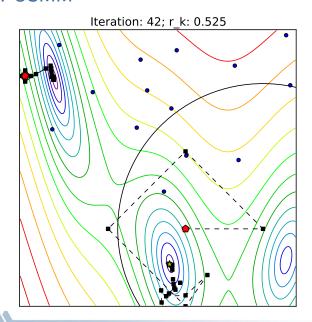


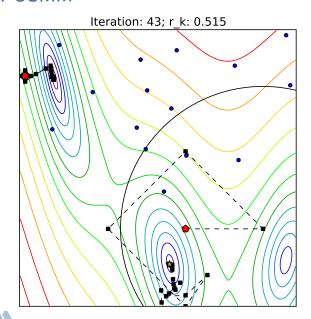


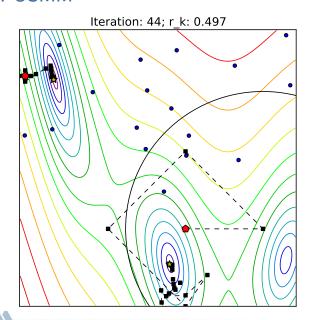


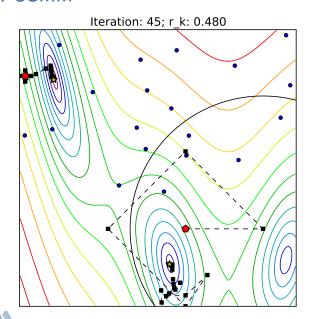












Closing Remarks

We have a growing set of use cases and examples

Let us know if you have examples you'd like to see

▶ https://github.com/Libensemble/libensemble

